User Tools

Site Tools


notes:bayesian_classification

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision Both sides next revision
notes:bayesian_classification [2013/03/15 13:37]
andy [Combining words]
notes:bayesian_classification [2013/03/15 14:06]
andy [Combining words]
Line 94: Line 94:
  
 \begin{equation*} P(C_i|W_a \cap W_b \cap ... \cap W_z) = \frac{\frac{1}{N}N_{C_i}\prod\limits_{j=a}^z{\frac{N_{C_i}(W_j)}{N_{C_i}}}}{\frac{1}{N}\sum\limits_{k=1}^n{N_{C_k}\prod\limits_{j=a}^z{\frac{N_{C_k}(W_j)}{N_{C_k}}}}} \end{equation*} \begin{equation*} P(C_i|W_a \cap W_b \cap ... \cap W_z) = \frac{\frac{1}{N}N_{C_i}\prod\limits_{j=a}^z{\frac{N_{C_i}(W_j)}{N_{C_i}}}}{\frac{1}{N}\sum\limits_{k=1}^n{N_{C_k}\prod\limits_{j=a}^z{\frac{N_{C_k}(W_j)}{N_{C_k}}}}} \end{equation*}
-\begin{equation} P(C_i|W_a \cap W_b \cap ... \cap W_z) = \frac{\prod\limits_{j=a}^z{N_{C_i}(W_j)}}{N_{C_i}^{x-1}\sum\limits_{k=1}^n{\frac{1}{N_{C_k}^{x-1}}\prod\limits_{j=a}^z{N_{C_k}(W_j)}}} \end{equation}+\begin{equation} ​\Rightarrow ​P(C_i|W_a \cap W_b \cap ... \cap W_z) = \frac{\prod\limits_{j=a}^z{N_{C_i}(W_j)}}{N_{C_i}^{x-1}\sum\limits_{k=1}^n{\frac{1}{N_{C_k}^{x-1}}\prod\limits_{j=a}^z{N_{C_k}(W_j)}}} \end{equation}
  
-Where $x$ is the total number of words.+Where $x$ is the total number of words. This version keeps the values relatively large so should hopefully reduce problems with floating point underflow (although may be susceptible to overflow if the number of tokens becomes excessive).
 ==== Two-category case ==== ==== Two-category case ====
  
notes/bayesian_classification.txt ยท Last modified: 2013/03/15 14:13 by andy